
CS 267 Applications of Parallel Computers

Lecture 11:

Sources of Parallelism and Locality
(Part 3)

Tricks with Trees

David H. Bailey

Based on previous notes by Jim Demmel
and Dave Culler

http://www.nersc.gov/~dhbailey/cs267

Recap of last lecture

° ODEs
• Sparse Matrix-vector multiplication

• Graph partitioning to balance load and minimize communication

° PDEs
• Heat Equation and Poisson Equation

• Solving a certain special linear system T

• Many algorithms, ranging from

- Dense Gaussian elimination, slow but very general, to

- Multigrid, fast but only works on matrices like T

Outline

° Continuation of PDEs
• What do realistic meshes look like?

° Tricks with Trees

Partial Differential Equations

PDEs

Poisson’s equation in 1D

° Solve Tx=b where

2 -1

-1 2 -1

 -1 2 -1

 -1 2 -1

 -1 2

T = 2-1 -1

Graph and “stencil”

Poisson’s equation in 2D

° Solve Tx=b where

° 3D is analogous

4 -1 -1

-1 4 -1 -1

 -1 4 -1

 -1 4 -1 -1

 -1 -1 4 -1 -1

 -1 -1 4 -1

 -1 4 -1

 -1 -1 4 -1

 -1 -1 4

T =

4

-1

-1

-1

-1

Graph and “stencil”

Algorithms for 2D Poisson Equation with N unknowns

Algorithm Serial PRAM Memory #Procs

° Dense LU N3 N N2 N2

° Band LU N2 N N3/2 N

° Jacobi N2 N N N

° Explicit Inv. N log N N N

° Conj.Grad. N 3/2 N 1/2 *log N N N

° RB SOR N 3/2 N 1/2 N N

° Sparse LU N 3/2 N 1/2 N*log N N

° FFT N*log N log N N N

° Multigrid N log2 N N N

° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication

Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

2 22

Mflop/s versus Run Time

° Problem: Iterative solver for a convection-diffusion
problem; run on a 1024-CPU NCUBE-2.

° Reference: Shadid and Tuminaro, SIAM Parallel
Processing Conference, March 1991.

Solver Flops CPU Time Mflop/s

Jacobi 3.82x1012 2124 1800

Gauss-Seidel 1.21x1012 885 1365

Least Squares 2.59x1011 185 1400

Multigrid 2.13x109 6.7 318

° Which solver would you select?

Relation of Poisson’s equation to Gravity, Electrostatics

° Force on particle at (x,y,z) due to particle at 0 is

 -(x,y,z)/r^3, where r = sqrt(x +y +z)

° Force is also gradient of potential V = -1/r

 = -(d/dx V, d/dy V, d/dz V) = -grad V

° V satisfies Poisson’s equation (try it!)

2 2 2

Comments on practical meshes

° Regular 1D, 2D, 3D meshes
• Important as building blocks for more complicated meshes

° Practical meshes are often irregular
• Composite meshes, consisting of multiple “bent” regular meshes

joined at edges

• Unstructured meshes, with arbitrary mesh points and
connectivities

• Adaptive meshes, which change resolution during solution
process to put computational effort where needed

Composite mesh from a mechanical structure

Converting the mesh to a matrix

Effects of Ordering Rows and Columns on Gaussian Elimination

Irregular mesh: NASA Airfoil in 2D (direct solution)

Irregular mesh: Tapered Tube (multigrid)

Adaptive Mesh Refinement (AMR)

°Adaptive mesh around an explosion
°John Bell and Phil Colella at LBL (see class web page for URL)
°Goal of Titanium is to make these algorithms easier to implement

in parallel

Challenges of irregular meshes (and a few solutions)

° How to generate them in the first place
• Triangle, a 2D mesh partitioner by Jonathan Shewchuk

• 3D harder!

° How to partition them
• ParMetis, a parallel graph partitioner

° How to design iterative solvers
• PETSc, a Portable Extensible Toolkit for Scientific Computing

• Prometheus, a multigrid solver for finite element problems on
irregular meshes

• Titanium, a language to implement Adaptive Mesh Refinement

° How to design direct solvers
• SuperLU, parallel sparse Gaussian elimination

° These are challenges to do sequentially, the more so
in parallel

Tricks with Trees

Outline

° A log n lower bound to compute any function in parallel

° Reduction and broadcast in O(log n) time

° Parallel prefix (scan) in O(log n) time

° Adding two n-bit integers in O(log n) time

° Multiplying n-by-n matrices in O(log n) time

° Inverting n-by-n triangular matrices in O(log n) time

° Inverting n-by-n dense matrices in O(log n) time

° Evaluating arbitrary expressions in O(log n) time

° Evaluating recurrences in O(log n) time

° Solving n-by-n tridiagonal matrices in O(log n) time

° Traversing linked lists

° Computing minimal spanning trees

° Computing convex hulls of point sets

2

2

A log n lower bound to compute any function of n variables

° Assume we can only use binary operations, one per
time unit

° After 1 time unit, an output can only depend on two
inputs

° Use induction to show that after k time units, an
output can only depend on 2k inputs

° A binary tree performs such a computation

Broadcasts and Reductions on Trees

Binary Tree Addition on a Message Passing System

° Suppose we wish to compute the global sum of x_i,
contained on processor i. Assume N = 2^n
processors.

° Algorithm on processor kp, 0 <= kp < n:

° do for k = 0 to m - 1:
• Compute ip := ieor (kp, 2^k)

• Send current x to processor ip.

• Receive s from processor ip.

• x := x + s

° enddo

° At completion of loop, processor 0 has global sum.

° This scheme can be easily generalized to non-
power-of-two processor counts and to more general
arrays.

Parallel Prefix, or Scan

° If “+” is an associative operator, and x[0],…,x[p-1] are input
data then parallel prefix operation computes

° Notation: j:k mean x[j]+x[j+1]+…+x[k], blue is final value

y[j] = x[0] + x[1] + … + x[j] for j=0,1,…,p-1

Mapping Parallel Prefix onto a Tree - Details

° Up-the-tree phase (from leaves to root)

° Down the tree phase (from root to leaves)

° By induction, S = sum of all leaves to left of subtree rooted at the parent

1) Get values L and R from left and right children
2) Save L in a local register M
3) Pass sum S = L+R to parent

1) Get value S from parent (the root gets 0)
2) Send S to the left child
3) Send S + M to the right child

Adding two n-bit integers in O(log n) time

° Let a = a[n-1]a[n-2]…a[0] and b = b[n-1]b[n-2]…b[0] be two n-bit
binary numbers

° We want their sum s = a+b = s[n]s[n-1]…s[0]

° Challenge: compute all c[i] in O(log n) time via parallel prefix

° Used in all computers to implement addition - Carry look-ahead

c[-1] = 0 … rightmost carry bit
for i = 0 to n-1
 c[i] = ((a[i] xor b[i]) and c[i-1]) or (a[i] and b[i]) ... next carry bit
 s[i] = a[i] xor b[i] xor c[i-1]

 for all (0 <= i <= n-1) p[i] = a[i] xor b[i] … propagate bit
 for all (0 <= i <= n-1) g[i] = a[i] and b[i] … generate bit

 c[i] = (p[i] and c[i-1]) or g[i] = p[i] g[i] * c[i-1] = C[i] * c[i-1]
 1 1 0 1 1 1
 … 2-by-2 Boolean matrix multiplication (associative)

 = C[i] * C[i-1] * … C[0] * 0
 1
 … evaluate each P[i] = C[i] * C[i-1] * … * C[0] by parallel prefix

Multiplying n-by-n matrices in O(log n) time

° For all (1 <= i,j,k <= n) P(i,j,k) = A(i,k) * B(k,j)
• cost = 1 time unit, using n^3 processors

° For all (1 <= I,j <= n) C(i,j) = Σ P(i,j,k)
• cost = O(log n) time, using a tree with n^3 / 2 processors

k =1

n

Inverting triangular n-by-n matrices in O(log2 n) time

° Fact:

° Function TriInv(T) … assume n = dim(T) = 2m for simplicity

° time(TriInv(n)) = time(TriInv(n/2)) + O(log(n))
• Change variable to m = log n to get time(TriInv(n)) = O(log2n)

A 0
C B

-1

= A 0

-B CA B
-1

-1

-1 -1

If T is 1-by-1
 return 1/T
else
 … Write T = A 0
 C B
 In parallel do {
 invA = TriInv(A)
 invB = TriInv(B) } … implicitly uses a tree
 newC = -invB * C * invA
 Return invA 0
 newC invB

Inverting Dense n-by-n matrices in O(log n) time

° Lemma 1: Cayley-Hamilton Theorem
• expression for A-1 via characteristic polynomial in A

° Lemma 2: Newton’s Identities
• Triangular system of equations for coefficients of characteristic

polynomial

° Lemma 3: trace(Ak) = ΣΣΣΣ Ak [i,i] = Σ Σ Σ Σ [λλλλi (A)]k

° Csanky’s Algorithm (1976)

° Completely numerically unstable

2

i=1

n

i=1

n

1) Compute the powers A2, A3, …,An-1 by parallel prefix
 cost = O(log2 n)
2) Compute the traces sk = trace(Ak)
 cost = O(log n)
3) Solve Newton identities for coefficients of characteristic polynomial
 cost = O(log2 n)
4) Evaluate A-1 using Cayley-Hamilton Theorem
 cost = O(log n)

Evaluating arbitrary expressions

° Let E be an arbitrary expression formed from +, -, *,
/, parentheses, and n variables, where each
appearance of each variable is counted separately

° Can think of E as arbitrary expression tree with n
leaves (the variables) and internal nodes labelled by
+, -, * and /

° Theorem (Brent): E can be evaluated in O(log n)
time, if we reorganize it using laws of commutativity,
associativity and distributivity

° Sketch of (modern) proof: evaluate expression tree E
greedily by

• collapsing all leaves into their parents at each time step

• evaluating all “chains” in E with parallel prefix

Evaluating recurrences

° Let xi = fi(xi-1), fi a rational function, x0 given

° How fast can we compute xn?

° Theorem (Kung): Suppose degree(fi) = d for all i
• If d=1, xn can be evaluated in O(log n) using parallel prefix

• If d>1, evaluating xn takes ΩΩΩΩ(n) time, i.e. no speedup is possible

° Sketch of proof when d=1

° Sketch of proof when d>1
• degree(xi) as a function of x0 is di

• After k parallel steps, degree(anything) <= 2k

• Computing xi take ΩΩΩΩ(i) steps

xi = fi(xi-1) = (ai * xi-1 + bi)/(ci * xi-1 + di) can be written as
xi = numi / deni = (ai * numi-1 + bi * deni-1)/(ci * numi-1 + di * deni-1) or
 numi = ai bi * numi-1 = Mi * numi-1 = Mi * Mi-1 * … * M1* num0
 demi ci di deni-1 deni-1 den0
Can use parallel prefix with 2-by-2 matrix multiplication

Summary of tree algorithms

° Lots of problems can be done quickly - in theory -
using trees

° Some algorithms are widely used
• broadcasts, reductions, parallel prefix

• carry look ahead addition

° Some are of theoretical interest only
• Csanky’s method for matrix inversion

• Solving general tridiagonals (without pivoting)

• Both numerically unstable

• Csanky needs too many processors

° Embedded in various systems
• CM-5 hardware control network

• MPI, Split-C, Titanium, NESL, other languages

